Es la primera oferta que brinda modelos de lenguaje de gran tamaño IBM Granite con soporte, protección y licencia de código abierto bajo el modelo de suscripción empresarial flexible y comprobado de Red Hat
Integra las herramientas open source de alineación de modelos InstructLab en la plataforma Linux empresarial líder del mundo para simplificar la experimentación y el ajuste de alineación de modelos de IA generativa
Proporciona un entorno de tiempo de ejecución de modelos compatible para la empresa en todas las plataformas NVIDIA, AMD e Intel para impulsar la innovación en IA basada en el código abierto
DENVER. RED HAT SUMMIT 2024. 7 DE MAYO DE 2024. Red Hat, Inc., el proveedor líder mundial de soluciones open source, anunció hoy el lanzamiento de Red Hat Enterprise Linux AI (RHEL AI), una plataforma de modelos fundacionales que permite a los usuarios desarrollar, probar e implementar modelos de IA generativa (GenAI) de manera más integrada. RHEL AI combina la familia de modelos de lenguaje de gran tamaño (LLM) Granite con licencia open source de IBM Research, las herramientas de alineación de modelos InstructLab basadas en la metodología LAB (Large-scale Alignment for chatBots) y un enfoque para el desarrollo de modelos impulsado por la comunidad a través del proyecto InstructLab. La solución completa se ofrece empaquetada como una imagen de RHEL de inicio optimizada para implementaciones de servidores individuales en toda la nube híbrida y también como parte de OpenShift AI, la plataforma híbrida de operaciones de aprendizaje automático (MLOps) de Red Hat, para ejecutar modelos e InstructLab a escala en entornos de clústeres distribuidos.
El lanzamiento de ChatGPT despertó un gran interés por la GenAI y, desde entonces, el ritmo de la innovación no ha dejado de cobrar impulso. Las empresas ya han trascendido las primeras evaluaciones de los servicios de la GenAI para crear aplicaciones basadas en IA. El rápido crecimiento del ecosistema de opciones de modelos abiertos ha estimulado una mayor innovación en IA y ha demostrado que no habrá «un modelo que rija a todos». Los clientes se beneficiarán al contar con una amplio abanico de opciones que atiendan necesidades específicas, las cuales se verán aceleradas por un enfoque abierto de la innovación.
La implementación de una estrategia de IA exige algo más que la simple elección de un modelo. Además de solventar los grandes costos de implementar la IA, las empresas tecnológicas requieren de conocimientos especializados para adaptar un modelo determinado a un caso de uso específico. Al déficit de habilidades en ciencia de datos se le suman importantes requisitos financieros, entre ellos:
- La adquisición de infraestructura de IA o el consumo de servicios de IA
- El complejo proceso de adaptar los modelos de IA a necesidades empresariales específicas
- La integración de la IA en las aplicaciones empresariales
- La gestión del ciclo de vida tanto de las aplicaciones como de los modelos.
Para reducir eficazmente las barreras de acceso a la innovación con IA, las empresas necesitan poder ampliar la lista de personas capaces de trabajar en iniciativas de IA y, al mismo tiempo, controlar los costos. En un esfuerzo por eliminar estos obstáculos, Red Hat pretende extender los beneficios de los verdaderos proyectos open source (de libre acceso y reutilizables, totalmente transparentes y abiertos a colaboraciones) a la GenAI gracias a las herramientas de alineación InstructLab, los modelos Granite y RHEL AI.
Crear IA de manera abierta con InstructLab
IBM Research creó la técnica Large-scale Alignment for chatBots (LAB), un método de alineación de modelos que utiliza la generación de datos sintéticos guiada por taxonomía y un novedoso sistema de ajuste de múltiples etapas. Al reducir la dependencia de costosas anotaciones humanas y modelos patentados, este enfoque hace que el desarrollo de modelos de IA sea más abierto y accesible para todos los usuarios. Con el método LAB, los modelos se pueden mejorar al especificar las habilidades y los conocimientos vinculados a una taxonomía. Esto genera datos sintéticos a partir de esa información a escala que influyen en el modelo y utiliza los datos generados para el entrenamiento de modelos.
Luego de comprobar que el método LAB podía ayudar a mejorar el rendimiento de los modelos de forma significativa, IBM y Red Hat decidieron lanzar InstructLab, una comunidad de código abierto creada en torno al método LAB y a los modelos de código abierto IBM Granite. El proyecto InstructLab pretende poner el desarrollo de LLM en manos de los desarrolladores al hacer que la creación y la contribución a un LLM sean tan sencillas como la contribución a cualquier otro proyecto de código abierto.
Como parte del lanzamiento de InstructLab, IBM también ha hecho pública una familia de modelos de lenguaje y código Granite en inglés. Estos modelos se publican con licencia Apache con total transparencia respecto de los conjuntos de datos utilizados para entrenarlos. El modelo de lenguaje Granite 7B en inglés se ha integrado a la comunidad InstructLab, en la que los usuarios finales pueden aportar sus habilidades y sus conocimientos para mejorar este modelo entre todos del mismo modo que lo harían al contribuir a cualquier otro proyecto de código abierto. Próximamente, habrá disponible un soporte similar para los modelos de código Granite dentro de InstructLab.
Innovación en IA de código abierto sobre un eje estructural de Linux de confianza
RHEL AI se funda en este enfoque abierto de la innovación en IA e incorpora una versión del proyecto InstructLab y modelos de lenguaje y código Granite para la empresa combinados con la plataforma Linux empresarial líder del mundo con el objeto de simplificar las implementaciones en infraestructuras híbridas. Esto genera una plataforma de modelos fundacionales que pretende llevar los modelos de GenAI con licencia de código abierto a la empresa. RHEL AI incluye:
- Modelos de lenguaje y código Granite con licencia de código abierto con protección y soporte plenos de Red Hat.
- Una distribución de InstructLab con soporte y ciclo de vida, que ofrece una solución escalable y rentable para incrementar las capacidades de LLM y hacer que el aporte de conocimientos y habilidades sea accesible a muchos más usuarios.
- Instancias de tiempo de ejecución de modelos de inicio optimizadas por medio de modelos Granite y paquetes de herramientas de InstructLab como imágenes RHEL de inicio a través del modo de imágenes de RHEL, que incluyen Pytorch y las bibliotecas de tiempo de ejecución y los aceleradores de hardware necesarios para AMD Instinct™ MI300X, Intel y NVIDIA GPUs, y NeMo
- La promesa de soporte empresarial y ciclo de vida completos de Red Hat, que comienza con una distribución de productos empresariales de confianza, con soporte de producción 24×7, soporte de ciclo de vida extendido de los modelos y protección de la propiedad intelectual de los modelos.
A medida que las empresas experimenten y ajusten nuevos modelos de IA en RHEL AI, dispondrán de una vía de acceso lista para escalar estos flujos de trabajo con Red Hat OpenShift AI, la cual incluirá RHEL AI y en la cual podrán aprovechar OpenShift Kubernetes Engine para entrenar y servir modelos de IA a escala, así como las capacidades de MLOps integradas de OpenShift AI para gestionar el ciclo de vida de los modelos. Watsonx.ai entreprise studio de IBM, que hoy se basa en Red Hat OpenShift AI, se beneficiará de la inclusión de RHEL AI en OpenShift AI cuando esté disponible, brindando capacidades adicionales para el desarrollo de AI empresarial, gestión de datos, gobernanza de modelos y mejor desempeño de precios.
La nube es híbrida. La IA, también.
Durante más de 30 años, las tecnologías de código abierto han acompañado la rápida innovación con menores costos de TI y menos obstáculos para la innovación. Red Hat ha encabezado esta iniciativa durante casi el mismo tiempo, desde proveer plataformas Linux abiertas para la empresa con RHEL a principios de la década de 2000, hasta fomentar el uso de contenedores y Kubernetes como base de la nube híbrida abierta y la computación nativa de la nube con Red Hat OpenShift.
Este impulso continúa con el trabajo que hace Red Hat potenciando las estrategias de IA/ML en toda la nube híbrida abierta, permitiendo que las cargas de trabajo de IA se ejecuten donde estén los datos, ya sea en el centro de datos, en múltiples nubes públicas o en el edge. Más allá de las cargas de trabajo, la visión de Red Hat en relación con la IA es que el entrenamiento y el ajuste de modelos sigan este mismo rumbo para poder resolver mejor las limitaciones en torno a la soberanía de los datos, el cumplimiento y la integridad de las operaciones. La uniformidad que ofrecen las plataformas de Red Hat en estos entornos, independientemente de dónde se ejecuten, es fundamental para que la innovación en IA continúe fluyendo.
RHEL AI y la comunidad de InstructLab contribuyen a materializar esta visión al eliminar muchos de los obstáculos que impiden experimentar y crear modelos de IA y, a la vez, al proporcionar las herramientas, los datos y los conceptos necesarios para impulsar la próxima ola de cargas de trabajo inteligentes.
Disponibilidad
Red Hat Enterprise Linux AI ahora está disponible como vista previa para desarrolladores. Sobre la base de la infraestructura de GPU disponible en IBM Cloud, que se utiliza para entrenar los modelos Granite y admitir InstructLab, IBM Cloud ahora agregará soporte para RHEL AI y OpenShift AI. Esta integración permitirá a las empresas implementar IA generativa más fácilmente en sus aplicaciones de misión crítica.
Red Hat Summit
Participe de las presentaciones del Red Hat Summit para escuchar las últimas novedades de los ejecutivos, clientes y partners de Red Hat:
- La nube es híbrida. La IA, también. 7 de mayo de 8:30 a 10 horas (UTC -6)
- Optimizar la TI para la era de la IA: miércoles 8 de mayo de 8:30 a 9:30 horas (UTC -6)
Citas de apoyo
Ashesh Badani, senior vice president and chief product officer, Red Hat
“La GenAI constituye un avance revolucionario para las empresas, pero solo si las organizaciones de tecnología son capaces de implementar y utilizar los modelos de IA de una forma que se ajuste a sus necesidades empresariales específicas. RHEL AI y el proyecto InstructLab, junto con Red Hat OpenShift AI a escala, se concibieron con el objeto de reducir muchas de las barreras que enfrenta la GenAI en toda la nube híbrida, desde el déficit de habilidades en ciencia de datos hasta la cantidad de recursos requeridos, mientas impulsan la innovación tanto en las implementaciones empresariales como en las comunidades de desarrollo”.
Ramine Roane, vicepresidente corporativo, AI Group, AMD
«La IA es uno de los cambios tecnológicos más importantes de los últimos 50 años. Para ayudar a acelerar una adopción más amplia de la IA, los modelos y herramientas utilizados para crear aplicaciones de IA deben ser accesibles para la empresa. Construido sobre una columna vertebral confiable de Linux con herramientas de código abierto y modelos con licencia de código abierto, RHEL AI es una de las plataformas que puede proporcionar esto, y nos complace apoyar el esfuerzo de Red Hat para impulsar la IA en la empresa con nuestras tecnologías AMD, incluidos los aceleradores Instinct AI”.
Jeremy Foster, vicepresidente sénior y gerente general, Red y Computación, Cisco
“El movimiento de la IA representa un cambio radical para las empresas y muchas organizaciones se debaten sobre la mejor forma de avanzar. Cisco continúa trabajando estrechamente con Red Hat para promover la adopción de la IA y RHEL AI acelerará la innovación al proporcionar modelos de LLM de código abierto como parte de una plataforma Linux para la empresa”.
Gil Shneorson, vicepresidente senior, plataformas de soluciones, Dell Technologies
“Dell Technologies ha sido pionera en brindar una gestión confiable y consistente del ciclo de vida de la infraestructura. Creemos que las actualizaciones de sistemas consistentes, confiables y seguras para las operaciones de TI empresariales son imperativas a medida que los sistemas continúan evolucionando. Las nuevas tecnologías que ofrecen a las organizaciones la capacidad de ampliar las actualizaciones de código y reducir los tiempos de implementación serán importantes para mantener el progreso en la innovación».
Frances Guida, directora de soluciones informáticas e inteligencia artificial, Hewlett Packard Enterprise
«Hewlett Packard Enterprise ha colaborado con Red Hat durante dos décadas para brindar soluciones líderes en la industria que combinan las plataformas HPE Compute con RHEL. Un entorno abierto es fundamental para la innovación en categorías tecnológicas de rápido crecimiento como la IA generativa y estamos ansiosos por explorar nuevas áreas de colaboración con RHEL AI y Red Hat para ayudar a los clientes de HPE a encontrar el éxito”.
Darío Gil, vicepresidente senior y director de Investigación, IBM
“Aportar verdadera innovación de código abierto al desarrollo de modelos de IA y aprovechar el poder de una amplia comunidad cambiará la forma en que las empresas piensan sobre sus planes para la adopción y escala de la IA. IBM ha sido un firme defensor del código abierto, respaldando comunidades influyentes como Linux, Apache y Eclipse, y nuestra colaboración con Red Hat representa un paso adelante en nuestro enfoque abierto para construir una IA segura, responsable y eficaz. RHEL AI e InstructLab, combinados con la familia de modelos Granite de código abierto de IBM, brindarán nuevo valor y opciones para los clientes que buscan crear modelos adecuados que aborden sus casos de uso con sus propios datos y al mismo tiempo minimicen los costos en un entorno de nube híbrida diversa.”
Hillery Hunter, CTO y directora general de innovación, IBM Infrastructure
“Muchas empresas buscan incorporar IA en sus aplicaciones de misión crítica. La disponibilidad de RHEL AI y OpenShift AI en IBM Cloud ayudará a transformar la forma en que la comunidad y las empresas construyen y aprovechan la IA generativa. Estamos permitiendo la colaboración abierta, simplificando la personalización de modelos y brindando modelos y herramientas compatibles con calidad empresarial para incorporar IA en cada aplicación”.
Justin Hotard, vicepresidente ejecutivo y director general de Data Center & AI Group, Intel
“Para que la adopción de la IA crezca, debe ser completamente de código abierto, donde los miembros de la comunidad contribuyan y creen nuevas aplicaciones y casos de uso. Al incorporar los modelos de código abierto Granite y el proyecto InstructLab, RHEL AI está preparado para generar un cambio significativo en la forma en que interactuamos, ajustamos y, en última instancia, utilizamos los modelos de IA en producción”.
Kirk Skaugen, presidente, Lenovo ISG
“Los clientes que implementan aplicaciones basadas en IA necesitan poder probar y experimentar con modelos potenciales en una plataforma familiar y de confianza que a la vez sea innovadora. Para Lenovo, el futuro de la IA es híbrido y creemos que RHEL AI es una vía fundamental para propagar la innovación de la IA híbrida y, a través de Red Hat OpenShift AI, la escalabilidad en producción. Nos complace enormemente trabajar junto con Red Hat para impulsar esta innovación de la IA híbrida mediante pruebas conjuntas en nuestros servidores ThinkSystem 8-GPU, como hardware básico de confianza para potenciar una IA de código abierto”.
Justin Boitano, vicepresidente de Productos Empresariales, NVIDIA
«Red Hat y NVIDIA tienen una larga historia de estrecha colaboración, y Red Hat Enterprise Linux AI demuestra nuestro enfoque compartido en llevar informática y software full-stack a los desarrolladores e investigadores que crean la próxima ola de tecnología y aplicaciones de IA».
Equipo Prensa
Portal Innova